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SUMMARY 
This paper is concerned with some statistical properties of the 

displacement of a marked fluid particle released from a given 
position in a turbulent shear flow, and in particular with the 
dispersion about the mean position after a long time. It is known 
that the dispersion takes a simple asymptotic form when the particle 
velocity is a stationary random function of time, and that analogous 
results are obtainable when the particle velocity can be transformed 
to a stationary random function by suitable stretching of the 
velocity and time scales. The basic hypothesis of the paper is that, 
in steady free turbulent shear flows which are generated at a point 
and have a similar structure at different stations downstream, the 
velocity of a fluid particle exhibits a corresponding Lagrangian 
similarity and can be so transformed to a stationary random function. 

The velocity and time scales characterizing the motion of a 
fluid particle at time t after release at the origin are determined 
in terms of the powers with which the Eulerian length and velocity 
scales of the turbulence vary with distance x from the origin. The 
time scale has the same dependence on t for all jets, wakes and 
mixing layers (and also for decaying homogeneous turbulence) 
possessing the usual kind of Eulerian similarity. The dispersion 
of a particle in the longitudinal or mean-flow direction (and likewise 
that in the lateral direction in cases of two-dimensional mean flow) 
is found to vary with t in such a way as to be proportional to the 
thickness of the shear layer at the mean position of the particle. 
The way in which the maximum value of the mean concentration 
of marked fluid falls off with,t (for release of a single particle) or 
with x (for continuous release) is also found. 

1. INTRODUCTION 
The purpose of this paper is to show that the well-known analysis of 

the dispersion of a marked fluid particle due to turbulence can be adapted 
to a discussion of diffusion in (statistically) steady turbulent jets, wakes and 
mixing layers. These cases, which hitherto have lain outside the scope of 
the available analysis, are distinguished by their property that the mean 
velocity is only approximately unidirectional. As a preliminary to an 
explanation of the modification required for these new cases, the existing 
analysis will be described briefly. 
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The object, in either a theoretical or an experimental investigation of 
turbulent diffusion of some conserved quantity not subject to molecular 
diffusion, is essentially to determine the statistical history of a volume of 
marked fluid which occupies a given position at an initial instant. If only 
the probability of finding marked fluid at any point and at any subsequent 
time (which is effectively the local mean concentration of the quantity 
undergoing diffusion) is required, it is sufficient to consider each volume 
element of the marked fluid in isolation. Only this limited aspect of 
turbulent diffusion will be considered herein. We are thus concerned with 
the statistical history of a single small element of fluid whose position is 
given at an initial instant. A description of the place of such ' one-particle 
analysis ' in the general framework of the theory of turbulent diffusion will 
be found in a recent survey (Batchelor & Townsend 1956). 

It will be enough for us to consider one component of the vector position 
.of the fluid particle or volume element under discussion. Thus, we wish 
t o  determine the probability distribution of the displacement X(t )  which the 
particle has undergone during the time interval t subsequent to the initial 
instant at which its position was given. The displacement X( t )  is a random 
quantity, taking different values for each trial or realization of the turbulent 
flow, and averages will be regarded as referring to an ensemble of such 
realizations. From a practical point of view, the most useful parameters 
.of the probability distribution of X ( t )  are the mean displacement 

t 

0 
x(t) = j ii(t') dt', 

where u(t) is (one component of) the particle velocity at time t ,  and the 
dispersion D,(t) about the mean displacement, where 

G. I. Taylor (1921) pointed out that there were advantages in thinking of 
the dispersion in terms of the particle velocity by means of the relation 

dD5 - = Z[u(t)-u(t) ] [X(t)--( t ) ]  
dt 

= 2 [a( t ) - i i ( t ) ] [~( t ' ) -  G(t')] dt'. if 
Taylor also noted-and this is the vital point in this well-known analysis- 

that it was possible to obtain some simple and definite results in the case in 
which u(t)  is a stationary random function of t ,  i.e. when the statistical 
properties of the particle velocity are constant in time. We then have 

X ( t )  = tu, 
- 

[u(t)-G][u(t')-u] = R(t - t ' ) ,  

and 
dDz 
- = 2 f R([) dt ,  
dt 0 

R being the covariance function of the fluctuation in particle velocity. 
It will normally happen, in cases of well defined turbulent flow, that R(5) + 0 
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as f -+ co and that at least the first few integral moments:of R(() converge. 
Consequently we have the important result that, as t + a, 

02 + 2At - 2B, 
where (as found from integration by parts), 

A = Jw R ( f )  d5, B = tR(6) d6. 
03 

0 0 

Moreover, since the displacement can be written in the form 
tla ma 

X(t )  = 2 J u(t’)dt‘, 
n=l  (n-1)a 

which is a series of random terms of equal variance, it follows from a plausible 
application (although a non-rigorous one, because the terms of the series 
are not statistically independent) of the central limit theorem that, as 
t + co (with u remaining constant), the probability distribution of X ( t )  
tends to the normal or Gaussian form (Batchelor 1949). When X ( t )  is 
normally distributed, the probability of finding the fluid particle within 
a given small range of positions at time t satisfies a Fickian or heat conduction 
type of equationand the above integral denoted by A can then be interpretedas 
a diffusivity, or coefficient of diffusion, with dimensions (velocity) x (length). 

In short, it is possible to obtain some useful results, and in particular 
to determine the asymptotic dependence of the dispersion on the time, 
when the random velocity of the particle is a stationary function of time. 
We are thus led to look about for turbulent flows in which the particle 
velocity has this simple property-or, failing stationarity, some related 
property which might allow a modified form of the above analysis to be 
applied. 

2. T W O  PREVIOUS APPLICATIONS OF ONE-PARTICLE ANALYSIS 

The first case of turbulent motion in which a study of particle dispersion 
was made was decaying turbulence generated by a grid placed in a uniform 
stream (Taylor ‘1935), and this remained the only one for many years. 
As a consequence of the decay of the turbulence, the velocity of a fluid 
particle is not here a stationary random function of time (not even 
approximately), and some modification of the above analysis is necessary 
before it can be applied. Provided it may be assumed that the turbulence 
preserves its structure as it decays (so that all functions characterizing the 
turbulence have the same form, although possibly with different length, 
time and velocity scales, at all relevant stages of the decay), a suitable 
modification of the diffusion analysis can be made to allow for the decay 
(Batchelor 1952; Batchelor & Townsend 1956). The essential point of 
the modification is to make a mathematical transformation of the particle 
velocity-expanding the velocity scale and contracting the time scale more 
and more as the decay proceeds-such that it becomes a stationary random 
function of a new variable related to time in a known way. (Taylor (1935)b 
attempted to allow for the decay of the turbulence, but his method is not 
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wholly correct inasmuch as it takes into account only the change in the 
velocity scale and ignores the possibility of an independent change in the 
time scale of the motion.) The modification that will be adopted to make 
the diffusion analysis applicable to free turbulent shear flows is similar in 
principle to that used for decaying turbulence behind a grid. 

A few years ago, when Sir Geoffrey Taylor was conducting his 
experiments on the longitudinal extension of a finite volume of salt solution 
injected into the turbulent flow of water along a circular pipe (Taylor 1954), 
I realized that turbulent flow along a cylindrical pipe is a case to which the 
above one-particle analysis can be applied without the need for any modifica- 
tion. The two properties of the turbulent flow in a pipe that together 
ensure that the velocity of a particle is a stationary random function of time 
are : (a)  the fluid particle is constrained by the walls always to lie within the 
turbulent flow inside the pipe ; (b) the turbulence has the same statistical 
properties at all cross-sections of the pipe. Even though the fluid particle 
may move into different parts of the pipe cross-section, including the slow 
moving layer near the wall, the statistical properties of the particle velocity 
do not change as it moves along the pipe, and the above analysis of diffusion 
(with x and u referring to the longitudinal or axial direction) is immediately 
applicable. Some observations of the times of travel of small solid spheres 
between two distant cross-sections of a circular pipe have been analysed with 
the aid of this diffusion analysis (Batchelor, Binnie & Phillips 1955). 

We are now in a position to consider the modification necessary to render 
the diffusion analysis applicable to the class of free turbulent shear flows, 
of which jets, wakes, and mixing layers are examples. Free turbulent shear 
flows differ from turbulent flow in a pipe, firstly in that the turbulence is 
not bounded by a rigid wall but adjoins non-turbulent fluid of uniform mean 
velocity, and secondly, in that, as a consequence of the absence of the 
rigid cylindrical wall, the turbulence changes from one cross-section to 
another, the simplest manifestation of this change being an increase in the 
width of the turbulent flow with increase of distance along the streamlines 
of the mean flow. So far as this second difference is concerned, it will 
often happen, in cases of free turbulent shear flow, that the turbulence 
preserves its structure as it changes with distance downstream, and that the 
change in the turbulence is confined to changes in the length, time and 
velocity scales of the motion; such a state of self-preservation is usually 
set up at a sufficient distance from the source or origin of the turbulence*. 

* Turbulent boundary layers on rigid walls have one ' free ' boundary and thereby 
might be thought to qualify for inclusion within the group of shear flows under dis- 
cussion. However, boundary layers on uniformly rough walls are different from the 
other examples named inasmuch as a self-preserving state of the turbulence is attained 
here only in a certain limited approximate sense, even when the Reynolds number is 
large. (In the rather artificial case of a uniform stream passing over a rigid wall with 
linearly increasing roughness height, exact self-preservation of the boundary layer 
turbulence is possible; the diffusion laws are then the same as those to be described 
later for the case of a mixing layer with zero velocity in the stream on one side.) In 
what follows, only those free turbulent shear flows which attain a self-preserving state 
exactly (possible only asymptotically, i.e. far downstream) will be considered. 
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We have here a situation which is a little like that in the case of diffusion 
in decaying turbulence behind a grid, and a natural suggestion is to employ 
the same trick of transforming the velocity of a fluid particle in such a way 
that it becomes a stationary random function. However, before exploring 
this suggestion, there is a question arising out of the first of the above 
differences between free turbulent shear flow and confined turbulent shear 
flow which must be answered. 

3. CAN A FLUID PARTICLE ESCAPE FROM THE REGION OF TURBULENT 

As remarked above, the presence of the walls of a pipe ensures that a 
fluid particle remains within the region of turbulent flow. Is there a 
similar guarantee, in the case of free turbulent shear flows, that a particle 
remains always in the region of turbulent flow ? Or is it possible that some 
fluid elements are ejected from the region of turbulent flow into the 
surrounding non-turbulent fluid and subsequently take no part in the 
turbulent motion ? It is necessary to settle this question before proceeding 
to an analysis of turbulent diffusion, because, if the possibility of such an 
escape from a region of turbulent flow to a region of non-turbulent flow should 
exist, it would have a profound effect on the statistical properties of the 
particle velocity. The velocity of the fluid particle would fall rapidly to 
zero, and might stay at that value since a return to the region of turbulent 
flow would not be inevitable. (This is in contrast to the case of flow in 
a pipe ; the viscous sub-layer near the walls may perhaps be regarded here 
as a region of non-turbulent flow in the particular sense that inertia forces 
are not important, but the velocity of a particle remains random in the 
viscous sub-layer and, in view of the geometrical contraint of the pipe wall, 
there is statistical certainty that a particle in the viscous sub-layer will 
eventually return to the central region of the pipe.) In the event of the 
probability of escape from the region of turbulent flow being finite, it would 
be impossible to transform the particle velocity into a stationary random 
function by simple adjustment of the velocity and time scales. 

Fortunately, the available evidence about the nature of free turbulent 
shear flows suggests that such escape does not occur (see Corrsin & Kistler 
1954). It has been known for some years that free turbulent shear flows 
are characterized, instantaneously, by a sharp boundary, of irregular and 
random form, separating a central region of turbulent motion from an outer 
region in which the flow is non-turbulent in the sense that the vorticity is 
zero. Something of the mechanism by which this instantaneous boundary 
remains sharp against the smearing action of viscosity is known. It seems 
that vorticity is diffused, by the action of viscosity, from the central to the 
outer region, and that the high rate of stretching of vortex lines in the central 
region rapidly increases the magnitude of the vorticity to some high equili- 
brium level as soon it is made finite by viscous diffusion ; in this way the 
sharp boundary propagates relative to  the non-turbulent fluid in the outer' 
region. What is important in the present connection is that the boundary 
always advances into the non-turbulent fluid, thus acting as a valve which 

MOTION ? 



72 G. K .  Batchelor 

allows non-turbulent fluid to pass into the central region by mixing or 
entrainment and to be converted to turbulent fluid, but which does not allow 
fluid to pass out of the central region. 

It seems, therefore, that, if a fluid element is once inside the central 
region of turbulent motion, it remains within it. The general way in which 
the velocity of a fluid particle in the central region changes with time will 
thus be related to the fact that, as the particle moves downstream (always 
remaining within the central region), it is subject to the influence of turbulent 
motion whose length and time scales are continually changing. We now 
consider how the velocity of a fluid particle in the central region of turbulent 
motion may be transformed into a stationary random function. 

4. TRANSFORMATION OF THE PARTICLE VELOCITY FOR FLOWS WITH 

We shall suppose that each of the turbulent shear flows concerned is 
steady and has the same structure at different distances x downstream from 
some virtual origin. The only change in the statistical properties of the 
flow (including the variation of the Eulerian mean velocity, although not 
necessarily its absolute magnitude) at different stations downstream is 
a change of the length ( L )  and velocity ( V )  scales of the motion. It will 
also be assumed that these length and velocity scales are proportional to 
powers of x, i.e. 

the corresponding variation of the time scale of the motion being as xp+*. 
Both these assumptions are usually valid at sufficiently large Reynolds 
numbers and at sufficiently large distances from the real origin for the 
common cases of free turbulent shear flow which are not influenced by 
rigid boundaries. 

An element of fluid is carried downstream, and the statistical properties 
of its velocity u(t) change with t as a consequence of the variation of 
the properties of the Eulerian velocity field with position x. Whatever 
may be the distance of the element downstream, it finds itself surrounded 
always by turbulence of the same statistical form. Thus the fluctuations 
of the velocity of the fluid particle have a (statistically) similar form 
at different times. We are therefore led to make the hypothesis that 
the particle velocity can be transformed to a stationary random function 
by suitable adjustment of the velocity and time scales. (More precisely, 
it is not u(t) ,  but u(t) - V,, which is so transformable, where U, is a velocity 
of translation of the whole field which has no effect on the turbulence and 
serves only to give a frame of reference with respect to which the flow is 
statistically steady ; V ,  is finite in the case of a wake, and is usually zero 
otherwise.) Analytically, the hypothesis is that 

where F(q) is a stationary random function of a new variable 7 given by 

SIMILARITY 

L(x) cc x p ,  V(x) cc x-4, (4.1) 

M t ) -  ullll4t) = F(4, (4.2) 

4 = d t /d t ) ,  (4.3) 
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and w(t )  and T(t) are the velocity and time scales of the statistical properties 
of the particle’s motion at time t .  The origin of t can be taken as the instant 
of release of the particle from a fixed position, and it will be necessary for 
validity of the hypothesis that t be large enough for the exact circumstances 
of the release to be ‘forgotten’. The hypothesis represented by (4.2) 
and (4.3) is no more than a similarity hypothesis for the Lagrangian features 
of the turbulence, exactly analogous to the better known similarity hypothesis 
for the Eulerian features. It is probable that the one similarity hypothesis 
is a strict consequence of the other, but attempts to prove this encounter 
the usual difficulties of relating Lagrangian and Eulerian features of flow. 

We have now to determine w(t )  and T(t), making use of the information 
that the velocity and time scales of the Eulerian properties of the turbulence 
at distance x downstream are proportional to x-Q and xp+@ respectively. 
Now the mean distance downstream of the particle (which will be supposed, 
for the sake of simplicity of algebraic form of the relations that follow, to 
have been released at x = 0, i.e. at the origin of the turbulence) at time t 
is x ( t ) ,  and the velocity and time scales of the Eulerian features of the 
turbulence at the position x = x ( t )  will presumably be also the velocity 
and time scales of the statistical properties of the particle motion at time t .  
Thus we have 

w(t )  cc [F(t>l-q, T(t) a [ F ( t ) l ” + ~ .  (4.4) 

The mean velocity of the particle is itself one of the statistical quantities 
included in the similarity hypothesis, and the dependence of x(t) on t can 
be determined from 

(4.5) 
d X ( t )  - - = u(t) = u, + P(Y)”(t), 

dt 

in which F(7) is a constant. 
Equations (4.2) and (4.3), together with the auxiliary relations (4.4) 

and (4.5), define the transformation that enables a modified form of the 
diffusion analysis described earlier to be applied to free turbulent flows 
whose properties change with distance downstream. 

The form of x(t), as determined by integration of (4.5), depends on 
whether U, is zero or not. It is convenient therefore to give separate 
consideration to these two cases in the next two sections. 

5. DIFFUSION IN JET-TYPE FLOWS 

We include under this heading all those steady free turbulent shear flows 
in which, as in the typical case of a jet discharging into stationary fluid, the 
absolute value of the velocity at any point conforms to the similarity laws 
represented by (4.1), so that U, = 0. Integration of (4.5), with the aid of 
(4.4), then gives 

x ( t )  cc t”(l+*), (5.1). 

the constant of integration being determined by the condition that the fluid 
particle is released at the position x = 0. 
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The new independent variable r] is thus defined by 
dr] = t(P+P)l(l+P) &, 

the arbitrary multiplicative constant being chosen as unity for convenience. 
Integration leads to two different forms of relation between 7 and t according 
as p = 1 or p # 1. I t  is not necessary to consider both cases, because, for 
all the types of flow concerned in this section, similarity of structure of the 
flow at different distances downstream is possible only with p = 1. This 
may be seen from a comparison of the two terms UaUjax and aE/ay which 
occur in the Eulerian equations of mean motion (the symbols having their 
usual meanings and not those applicable elsewhere in this paper). When 
both U2 and UV have the form required for (Eulerian) similarity, viz. 

x-2q x function of ylxp, 
the equation can be satisfied only if p = 1. Jets and mixing layers (with 
zero velocity on one side) are thus straight-sided, the turbulence being 
contained in either a conical or a wedge-shaped region. 

The relation between r] and f is thus 

7 = logt. (5.2) 
The fluctuation of the particle velocity about its mean value is 

u(t) -up) cc t q / Q + q F ( q ) P -  ( r ] ) ]  

= t-q’(l+q)f(q), say, 

wheref(7) is likewise a stationary random function of 7, and the fluctuation 
of the particle position about its mean value is 

We note in passing that the presence of the weighting factor in this integral 
will lead to the value of X ( t )  - x(t) being dominated by a finite portion of 
the range of integration, even when t -+ 03 ; in these circumstances, it 
would not follow from the central limit theorem that the probability distribu- 
tion of X( t )  - x(t) tends to the Gaussian form as t -+ co. 

The relation from which the statistical dispersion of the particle is 
determined now becomes 

where 5 = 7 - r]’ and R(5) is the covariance function off(7). If the position 
of release of the particle had been taken as some finite value of x ,  the upper 
terminal of this integral would have been finite ; however, the integral is 
convergent and the asymptotic form of the dispersion (as t - t  03) would 
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still be given by the above relation. 

The striking feature of this result is that the longitudinal dispersion of the 
marked fluid particle increases in proportion to the thickness of the shear 
layer at the mean position of the particle. Comment on this feature is 
postponed until 0 8. 

If it happens that the probability distribution of the displacement of the 
fluid particle has a Gaussian form (which may be so in some cases, although 
there are as yet insufficient grounds for expecting the Gaussian form in 
general), the quantity idDE/dt can be interpreted as a diffusivity. We 
might then account for the power of t in the expression for +dDz/dt 
by noting that tl'(l+g) is a measure of the mean distance downstream 
of the fluid particle at time t ,  and that representative length and velocity 
scales of the turbulent diffusing motions at distance x downstream are 
proportional to x and x-* respectively. 

6. DIFFUSION IN WAKE-TYPE FLOWS 

In the case of a wake behind a body held fixed in an otherwise uniform 
stream of speed U,, only the velocities in the shear flow relative to U, 
conform to the self-preservation laws, and the first term on the right hand 
side of (4.5) is non-zero. Moreover, a turbulent wake has a self-preserving 
structure only when the variations of velocity across the wake are small 
compared with U,, so that we might as well neglect the second term on the 
right hand side of this equation. With this approximation that the mean 
position of the particle is the same as if it travelled with the speed of the 
undisturbed stream, i.e. that 

Integration of (5.4) gives 

D,(t) cc tl/(l+q) cc q t ) .  (5 .5 )  

F ( t )  = U o t ,  (6.1) 
we have dq = t-p-q dt 
(the multiplicative constant again being put equal to unity). Again integra- 
tion gives two different forms of the relation between q and t according as 
p + q = 1 orp  + q # 1, and again an additional condition for self-preservation 
of the turbulence allows only one of these possibilities. As before, we 
compare the ways in which the terms U a U/ax and &lay in the Eulerian 
equation of motion depend on x ; on noting that the appropriate approximate 
form of U a U/ax is U, 8 U/ax in the present case, we find 

Thus the relation between q and t is again 
p + q =  1. 

q = logt. 
The fluctuation of the particle velocity about its mean value is now 

u(t)  - cc ( uo W [ F ( r l )  - %)I 
= t-"f(7?)7 say, 

and the fluctuation of the particle position about its mean value is 
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The relation from which the dispersion can be determined is 

co 

0 
= F2* I d1--p.)6 R( 5) d l ,  

D,(t) oc tl-q oc [X(t)]”.  showing that 

The general remarks in the preceding section are also relevant here. 

(6.31 

(6.4) 

7. LATERAL DIFFUSION IN TWO-DIMENSIONAL FREE TURBULENT SHEAR FLOWS. 

The notation and wording of the preceding sections have been chosen 
to refer to diffusion in the longitudinal direction, i.e. in the direction of the 
mean flow. However it is evident that, in cases in which the shear flow is 
statistically two-dimensional, the above analysis can also be regarded as. 
describing diffusion in the lateral y-direction (that in which the turbulence 
is stationary). The convection of the marked particle in the longitudinal 
direction by the mean flow again determines the way in which the properties. 
of the turbulence in the neighbourhood of the particle change with time,. 
and lateral diffusion follows laws of the same form as for longitudinal diffusion, 
the only difference being that there is no mean displacement of the particle 
in the lateral direction. Thus, the lateral component of the velocity of the 
particle is of the form 

t * / ( l + * ) g ( ~ )  for jet-type flows, 
tqg(rl )  for wake-type flows, 

v( t )  = 

where g is a stationary random function of q (which is related to t as in the 
two preceding sections) with zero mean. Then, if Y(t)  is the lateral displace- 
ment of the particle from its initial position in time t ,  the mean value of Y ( t )  
is zero, and the dispersion about the mean is given asymptotically, as t -+ 03,. 

W 
by 

t(l-*)/(l+q) I e--C-si(l+q)S(~) d5 for jet-type flows, 

tl-2q \ e-(1-q)‘5S(5) d( 

0 

? 9 i o c l  m for wake-type flows, dt 

“ 0  

where S(5) is the covariance function ofg(q). Thus, in all cases, 

W t )  W).  (7-1). 
The proportionality of the longitudinal and lateral dispersions is a simple 

consequence of the fact that the transformations needed to convert the 
longitudinal and lateral components of the particle velocity into stationary 
random functions are of the same form. However it should be kept in 
mind that, as a result of the shearing action associated with the distribution 
of mean Eulerian velocity, the fluctuations in u(t) are greater in magnitude, 
and possibly persist for a longer time, than those in v(t), so that D,(t) may 
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be a good deal larger numerically than D2/(t). The increase in thickness of 
the shear layer with distance downstream is essentially a process of diffusive 
spreading of fluid marked with finite vorticity and, since the two lateral 
components of velocity have comparable intensities in two-dimensional 
shear layers, Du(t) is likely to be cf the same general magnitude as the 
thickness of the shear layer at x = X(t). 

The lateral spread of positions of the marked particle would be of 
particular interest in a case in which marked particles are released at the 
origin at regular intervals, one after the other, or when the release is con- 
tinuous, as it might be when dissolved salt is used as the method of marking 
the fluid. The boundary, in the (x, y)-plane, of the ' wake ' of marked fluid, 
defined as the curve on which the mean density of marked fluid is some low 
arbitrarily chosen fraction of the mean density at y = 0 for the same value 
of x, is then a curve whose ordinate is proportional to DJt) when the abscissa 
has the value x(t). Thus the marked fluid is bounded by the curve 

for jet-type flows, y oc x = xp 

or y oc xl-q = xp for wake-type flows. 

The thickness of the ' wake ' of marked fluid in they-direction is proportional, 
in all cases, to the thickness of the turbulent shear layer in the x-direction. 
The marked fluid spreads out in the z-direction as rapidly as the growth in 
thickness of the shear layer allows it, so that when marked fluid is released 
continuously the ' wake ' of marked fluid has the same cross-sectional shape 
at  all values of x. 

8. SOME COMMON FEATURES OF THE ABOVE RESULTS 

Despite the apparent differences between the various cases of free 
turbulent shear flow, some aspects of the results obtained in $45-7 are 
common to them all. Two of these common features in particular call 
for notice in view of their fundamental character. The first is the relation 
between t and the new variable q. For both jet-type and wake-type flows, 
this relation was found to be 

'I = logt; (8.1) 
this was also the relation found in the case of decaying turbulence behind 
a grid (Batchelor & Townsend 1956). Going back one step, the common 
feature of all these cases of turbulent flow which leads to this logarithmic 
relation is the fact that the time scale characterizing the motion of a fluid 
particle is proportional to t ,  where t is measured from the instant at which 
the particle is released (at the point at which the turbulence originates). 

It is remarkable that in such widely different types of turbulent flow 
as jets, mixed layers, wakes, and decaying grid turbulence, the time scale 
of oscillations in the velocity of a fluid particle should always increase 
linearly with t. The distinctive property common to all these developing 
or decaying turbulent flows is their self-preservation, or similarity of 
structure at different stations normal to the mean streamlines, and one is 
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led to enquire if a simple dimensional argument will yield the result about 
the time scale. Presumably the explanation lies in the fact that the 
interval t since the marked particle was released at the origin is also the 
interval of time since the turbulent eddy which surrounds the particle was 
generated at the origin x = 0. Eddies are generated with infinite energy 
and zero linear dimensions at the (virtual) origin, and then convected 
downstream, and the development of the free turbulent shear layer as 
a function of x is essentially a process of diffusion and decay of the eddies 
under the action of inertia forces. I n  the absence of more than one 
dimensional parameter specifying the conditions of generation of the eddies 
a t  the origin (such as the momentum flux in the case of a jet), the time scale 
or representative period of the eddies moving downstream must, for 
dimensional reasons, be proportional to the decay time t. This repre- 
sentative period of the eddies is identical with the time scale of fluctuations 
of the velocity of an element of fluid in the eddy, and so the above general 
result is recovered. 

The second interesting common feature of the results of $ 5  and $ 6  
is that 

for both jet-type and wake-type flows the longitudinal dispersion increases 
in proportion to the thickness of the shear layer at the mean position of the 
particle. (The same is true of DXt) in cases of two-dimensional flow, 
as a consequence of the proportionality between D,(t) and DY(t).) This 
can be regarded as essentially a product of a dimensional argument, although 
such an argument might not be convincing by itself in view of doubt about 
whether the thickness of the shear layer at the mean position of the particle 
is really the only length available as a measure of the dispersion. (Results 
appropriate to a case in which the marked fluid particle is released at some 
finite value of x may also be obtained with analysis like that already described. 
The same forms of D,(t), etc., as those given above are found for sufficiently 
large values of t ,  but the results for smaller values oft  depend on the position 
of release and are certainly not obtainable from dimensional arguments.) 

9. THE MAXIMUM MEAN CONCENTRATION OF MARKED FLUID 

As the marked particle moves downstream the statistical dispersion 
of its position increases, in the way already described, and the probability 
of finding the marked particle in unit volume located at its mean position 
decreases correspondingly. This probability of finding the marked particle 
in unit volume at any given position and time, which may be termed the 
mean concentration of marked fluid, has its absolute maximum value at 
some constant value of ( y l x p ,  z/x”) which is unknown (although for any 
flow which is symmetrical the maximum clearly lies on the centre line), 
and at a distance downstream x = x( t )  which increases with t .  It is implicit 
in the hypothesis made in $ 4 that the whole probability distribution of the 
displacement X(t) attains a self-preserving form, and the same will be true 
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of the displacements in the two lateral directions ; thus the maximum mean 
concentration of marked fluid, Cm(t) say, may be determined from the 
relation expressing conservation of the total amount of marked fluid. The 
linear extent of the distribution of mean concentration of marked fluid in 
the x-direction is measured by Dz(t) ,  in any lateral direction in which the 
turbulence is of finite extent by [x(t)].,  and in any lateral direction in which 
the turbulence is stationary by DJt).  Hence 

Cm(t) .  DG( t> .  [X(t)l2p = constant 

in cases in which the turbulence is of finite extent in the two lateral directions 
(as in a round jet), and 

Cm(t) .  D , ( t ) .  D J t ) .  [X(t)]p = constant 

in cases of two-dimensional mean flow. In  all cases we have 

so that the variation of Cm(t) can be written generally as 

Cm(t) = [X(t)]-3? (9.1) 

If the release of marked particles at x = 0 is continuous, the distribution 
of mean concentration of marked fluid is steady and the maximum mean 
concentration (now only a maximum with respect t o y  and z) is a function 
of x alone, say CiL(x). For turbulence which is of finite extent in the two 
lateral directions, uniformity of the flux of marked fluid across different 
sections downstream requires 

(9.2) 
for jet-type flows, 
for wake-type flows. 

For turbulence which is stationary in one lateral direction, the diffusion 
in this lateral unbounded direction must be taken into account, but, as 
already seen, the dispersion of a particle in this lateral direction is propor- 
tional to the thickness of the shear layer at the mean position of the particle, 
and the above functional forms of Ck(x) are again applicable. (These 
results for CiL(x) can also be obtained by integrating the contributions 
from a whole set of instantaneous sources of marked fluid, released at 
different times, provided the fact that the similarity laws are applicable 
to wake-type flows only when x and t are large is employed.) 

10. TABLE OF RESULTS FOR THE VARIOUS FREE SHEAR FLOWS 

The values of the similarity powers p and q for the cases of the two- 
dimensional jet, wake and mixing layer (with zero velocity in the stream 
on one side) and the axi-symmetrical jet and wake are well known (Goldstein 
1938). Substitution in the formulae (4.4), (5.1), (5.5), (6.4), (9.1) and (9.2) 
then gives the power laws shown in table 1. 
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Round Plane 
jet jet ~-~ 

Eulerian length scale L(s)  1 1 

Mixing 
layer 

1 

Eulerian velocity scale V(x) 

Mean displacement of particle z(t) 

Lagrangian velocity scale w(t )  

Lagrangian time scale T ( t )  

Dispersion D,(t), D,(t) 
Maximum mean concentration 

Maximum mean concentration 
(release of one particle) C&) 

(continuous release) Ch(x) 

-1 

4 
-4 

1 
1 - 

-3 
-1 

-1 

2 

1 
-8 

- 

1 

Q 
-2 

-4 

0 

1 

0 

1 

1 

-3 

- 2  

Round 
wake 

1 

-3  

-8 

* 

1 

1 

-1  

- Q  

Plane 
wake 

B 
-4 

-3 

4 

-3 

1 

1 

-1 

Table 1. Showing powers of the independent variable (either x or t )  for the quantities 
listed on the left hand side. 
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